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Abstract

We present CiteNet, a search and visualization
web application for exploring scientific liter-
ature. CiteNet provides an alternative to the
current keyword-based search paradigm, offer-
ing instead a “key-paper” approach where the
user implicitly specifies the search content by
providing a set of related articles. By using
underlying citation and semantic relationships
between articles, CiteNet extracts a highly rel-
evant set of articles related to the user’s query.
The semantics of each article is captured by a
novel document embedding method. CiteNet
implements a suite of visualization features to
allow the user to explore the results, quickly
identify important articles and further refine
their search query. CiteNet is available at
https://citenet.io.

1 Introduction

Searching for published literature is a crucial task
for scientific researchers. Widely used search en-
gines such as Google Scholar1 and PubMed2 are
keyword-based, relying on the user to provide a
query that is specific and unique enough to a) cap-
ture the relevant topic of interest and b) exclude
the substantial space of false-positive results. This
paradigm places a high burden on the user, requir-
ing knowledge of esoteric keywords to yield the
best search results. In addition to this, these search
engines return results as ranked lists spread over
many pages, resulting in a fragmented search ex-
perience since the user must keep track of relevant
papers while navigating between pages.

Here we introduce CiteNet, a search and visu-
alization web application designed to modernize
and expedite literature search. CiteNet is familiar
and intuitive, requiring no preamble or specialized
knowledge to use. Underlying the search algorithm

1https://scholar.google.com/
2https://pubmed.ncbi.nlm.nih.gov/

is a citation graph and a semantic graph, where
articles (nodes) are connected through citation rela-
tionships (cites or cited by) and the semantic sim-
ilarity of article abstracts, respectively. CiteNet
relies on a novel “key-paper” querying approach,
where the user specifies a set of relevant research ar-
ticles (seeds) instead of keywords. Here, the shared
concepts of the seed papers implicitly define the
search. CiteNet attempts to return other, highly
relevant research articles based on these shared
concepts. Given the user’s query, CiteNet traverses
the citation and semantic graphs to identify these
articles and displays them in an interactive visual-
ization. Currently, CiteNet indexes approximately
23 million biomedical articles from the PubMed
database and will be expanded in the future to index
articles from all scientific disciplines.

In the following section (§2), we provide a brief
walk-through on how to perform a search with
CiteNet. In (§3), we highlight two compelling case
studies. In (§4), we discuss CiteNet’s implemen-
tation, namely its document embedding method,
search engine and server architecture. We conclude
with a summary and discussion of future directions
(§5).

2 Using CiteNet

The CiteNet homepage presents users with a stan-
dard search engine interface (Figure 1A). The user
can input article title, author name(s), journal or
publication date and select the correct article from
a dropdown. This process can be repeated to de-
fine a set of seed articles. After searching, users
can view the returned results as a ranked list (Fig-
ure 1B) or a citation graph (Figure 1C). The rank
view displays a simplified article view containing
title and author(s) to the left and a dialogue con-
taining more detailed information (such as abstract,
journal title and publication date) to the right. The

https://citenet.io
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Figure 1: CiteNet user interface. (A) CiteNet homepage where users can input query papers using a dropdown
listing papers from the database. (B) Rank view displaying the top search results. (C) Network view displaying
citation relationships between nodes and (inset) popover and neighbor focusing when a node is hovered over. (D)
Side panel with option to switch views or refine the search with the new search queue (denoted by hatched nodes).
In (B), (C) and (D) node size corresponds to relevance to the query articles. Lighter coloured nodes are older
articles, orange nodes are the original query articles and nodes with a hatch pattern are articles in the current
search queue.

network view allows users to intuitively identify
communities of articles and visually interrogate ci-
tation relationships between them. When the user
hovers over a node, a popover displays its title and
authors and its direct citation neighbours are fo-
cused (Figure 1C, inset). Clicking on a node in
network view brings up a modal identical to the
rank view dialogue, containing detailed informa-
tion about the given article. The user has the option
to add additional articles to the search queue by
clicking the “plus” icon in the dialogue (Figure 1B)
and triggering a new search from a side panel (Fig-
ure 1D).

CiteNet’s search paradigm relies on having mul-
tiple seed articles to produce the best results. Each
article provided to the search algorithm implicitly
contains a set of concepts. As more articles are
added, the number of shared concepts necessarily
decreases, refining the query. CiteNet aims to find
papers that lie at this intersection of concepts. As
the user navigates the search results, they have the

option to add or remove any articles to their search
query and perform the search again – allowing for
iterative refining of the original query.

3 Case Studies

To qualitatively validate CiteNet’s key-paper search
paradigm, we conduct two case studies that focus
on its most compelling features: semantically in-
formed literature search and iterative search.

3.1 Semantically Informed Search

While the citation network serves as a human-
curated set of relationships between articles, it is
not always a reliable indicator of relevance. For
example, methods (e.g. a machine learning algo-
rithm), resources (e.g. a benchmark dataset) or
review papers come to dominate the surrounding
subgraph in the citation network. A search per-
formed over this subgraph will return these highly
cited papers even when they are not amongst the
most relevant to a user based on their provided



Table 1: Titles of the top 5 most similar articles (descending order) for a given seed(s) when only the citation
network is used to inform the search and when both the citation and semantic networks are used. Bold, seed
paper(s).
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31138109 CollaboNet: Collaboration of Deep Neural Networks for Biomedical Named Entity Recognition
30307536 Cross-type Biomedical Named Entity Recognition With Deep Multi-Task Learning

seed paper(s). A natural solution to this problem is
to incorporate semantic information in the search,
which may have the effect of down-weighting these
highly cited papers and up-weighting less cited, but
more relevant papers.

To this end, we perform a case study on the
effect of incorporating semantic information into
CiteNet’s search algorithm. In short, we use a
novel document representation technique to embed
each article abstract into a continuous vector, where
we expect semantically similar abstracts to end
up close together in the embedding space. We
then use these embeddings to form the semantic
graph (see §4.1). Specifically, we chose a seminal
paper on the application of deep neural networks to
biomedical named entity recognition (NER) as our
seed paper (Habibi et al., 2017), and explore the
search results returned by CiteNet when a) only the
citation network informs the search and b) both the
citation and semantic networks inform the search.

Table 1 presents the results of these two searches.
When only the citation network informs the search,
four of the top five results present a particular tool
or benchmark corpus for biomedical NER, and the
remaining paper is a review on NER for chemical
entities only. These results are in line with our in-
tuition that highly cited methods, resources and re-
views will come to dominate the results of a search
based on the citation network only. When the se-
mantic network additionally informs the search,

CiteNet returns five highly relevant articles. Like
the seed paper, each of the returned articles presents
a methodological advance in applying deep learn-
ing to biomedical NER. Furthermore, four of the
returned articles use deep learning models based
on the same underlying architecture as the model
used in the seed paper (Lample et al., 2016).

3.2 Iterative Search
Searching for scientific literature is an iterative pro-
cess. A user may not know what they are looking
for precisely at the outset but instead perform suc-
cessive searches until arriving at a set of highly rel-
evant articles. In the current paradigm of keyword-
based search, each search is performed indepen-
dently, placing the burden on the user to manually
keep track of the relevant results of each search,
e.g., by maintaining multiple open browser tabs.
While a user can narrow their search by using
boolean operators in their query, studies suggest
that less than 5% of users use these advanced fea-
tures (Spink et al., 2001). CiteNet supports an
iterative search process natively and intuitively by
allowing the user to refine a search with the arti-
cles from the current search results, successively
narrowing the search until the majority of results
are relevant to their original query.

To explore the effect of iterative searching, we
build on our first case study (see §3.1) by refin-
ing the search with a second seed paper. Specifi-
cally, we chose (Giorgi and Bader, 2018), which



Table 2: Titles of the top 5 most similar articles (descending order) for the given seed(s). Bold, seed paper(s).
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Embeddings of Various Linguistic Information
27283952 TaggerOne: Joint Named Entity Recognition and Normalization With semi-Markov Models

extends the contributions of the first seed paper
(Habibi et al., 2017) by pre-training the model (of-
ten referred to as transfer learning). The additional
seed paper implicitly narrows the search from deep
learning-based methods for biomedical NER to
those that exploit pre-training. The shared con-
cepts between these seeds is reflected in the refined
search results, where the top three most relevant pa-
pers (Weber et al., 2019; Devlin et al., 2018; Giorgi
and Bader, 2019) each present a pre-training strat-
egy for biomedical NER.

4 System Design

CiteNet ensures fast keyword querying of papers
as well as rapid access to citation and semantic
edges during the search phase by storing article in-
formation in a local Elasticsearch3 database. This
is an alternative to online querying of remote re-
sources which may be prone to data limits, outages
or unexpected changes to the API or data format.

Currently, CiteNet indexes articles from
PubMed. Article metadata is batch downloaded
from the U.S. National Library of Medicine4

(NLM), parsed, formatted and quality controlled –
resulting in an index size of approximately 23 mil-
lion articles. Article abstracts are passed to a doc-
ument encoder which learns salient feature vector
representations for each article (see §4.1). A graph
of semantically similar articles is then derived from
these features. Citation edges are obtained from
the iCite database (Hutchins et al., 2019).

The backend server and search algorithm are
implemented in Node.js5 and the front-end user in-
terface is implemented using the React framework6.

3https://www.elastic.co/products/
elasticsearch

4https://www.nlm.nih.gov/
5https://nodejs.org/en/
6https://reactjs.org/

An overview of the CiteNet system design is given
in Figure 2.

4.1 Document Embedding

To encode semantic information into the search al-
gorithm, CiteNet uses a novel document representa-
tion method. Following other distributed document
representation methods such as Doc2Vec (Le and
Mikolov, 2014), the underlying model is trained in
an unsupervised fashion to encode each document
as a dense, low-dimensional vector with the seman-
tic meaning of the document distributed along the
dimensions. More specifically, our method is in-
spired by previous attempts to use autoencoders for
document representation (Zhai and Zhang, 2016;
Chen and Zaki, 2017). However, instead of repre-
senting documents as normalized word count vec-
tors and training the model to re-create them, we
train the model to reconstruct the input text directly,
forcing it to account for word order. We hypothe-
size that this inherently more difficult learning ob-
jective will induce better document representations.
Additionally, we incorporate a language model pre-
trained on billions of words, exploiting the rich
syntactic and semantic information captured by its
contextual word embeddings.

We frame the model as an encoder-decoder (or
seq2seq) model, and abstract away the idea of an
encoder, pooler, and decoder. The encoder is
trained to map the tokens of the input text (in our
case, abstracts of scientific papers) to dense, low-
dimensional vectors. The pooler is responsible for
mapping these word embeddings to a single doc-
ument embedding. Finally, the decoder, using the
document embedding as input, attempts to re-create
the input text. The entire model is trained to mini-
mize the reconstruction loss of the input documents
in an end-to-end fashion. Once training is com-

https://www.elastic.co/products/elasticsearch
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Figure 2: CiteNet system overview. All available
PubMed article metadata (title, authors, abstract, jour-
nal and publication date) is downloaded from U.S. Na-
tional Library of Medicine (NLM), formatted into an
appropriate schema and added to CiteNet’s database.
Article abstracts are passed to the document encoder,
which produces document embeddings. A seman-
tic graph is then derived from these embeddings and
added to the database. Citation links between arti-
cles are obtained from iCite and added to the database.
Given a user query, CiteNet’s search engine queries
the database and produces a search result which is re-
turned to the user as an interactive visualization. Icons
made by Becris, Smashicons and Pixel perfect from
www.flaticon.com.

plete, the decoder is discarded, and the encoder and
pooler can be used to embed new documents. This
abstraction ensures that these components remain
modular and can be easily swapped and continu-
ally updated with state-of-the-art natural language
processing (NLP) models. More formally, each
component operates as follows:

• Encoder: for a given document D of n word
tokens (w1, ..., wn), maps each token to a
fixed-length contextualized vector represen-
tation Z ∈ Rn×dword which encode syntax and
semantics.

• Pooler: maps the contextual word embed-
dings output by the encoder, Z, to a single
vector representation d ∈ Rddocument .

• Decoder: attempts to reconstruct the input
document D given only the document embed-
ding output by the pooler, d.

In this work, we use a pre-trained ALBERT
model as the encoder (Lan et al., 2019), where

dword = 768. ALBERT belongs to a family of
pre-trained language models that have achieved
state-of-the-art performance across a wide variety
of NLP tasks (Dai and Le, 2015; Radford et al.,
2018; Devlin et al., 2018; Howard and Ruder, 2018)
and now consistently rank among the top meth-
ods for NLP leaderboards like GLUE (Wang et al.,
2018) and SuperGLUE (Wang et al., 2019). For the
pooler, we linearly project the mean of the token
embeddings from the last layer of the encoder to
a vector of size ddocument = 512 using a feedfor-
ward neural network. We use a vanilla, one-layer
transformer (Vaswani et al., 2017) as the decoder.

As a proof-of-concept, the model was trained on
50,000 PubMed abstracts centred around the case
study paper, Habibi et al. (2017) (see §3). We first
take all two-hop neighbours of Habibi et al. (2017)
in the citation graph. In total, this constitutes 3288
articles. We then randomly sample from the set dif-
ference of the three-hop and two-hop neighbours to
make up the remaining 46,712 papers. After train-
ing, we compute the cosine similarity between all
pairs of document embeddings. Similarities above
a stringent threshold are retained and binarized to
create a semantic graph that is used in CiteNet’s
core search algorithm (see §4.2).

4.2 Search Algorithm

CiteNet leverages information from both a citation
and semantic graph. These graphs have different
topologies and capture different but complementary
relationships between articles. The nodes returned
by a search are scored based on their proximity to
the set of seed nodes specified by the user, deter-
mined through a random walk with restart (RWR)
process.

CiteNet performs several thousand RWRs on a
multigraph of citation and semantic edges in order
to approximate the process steady-state. Each seed
node becomes the source for an equal proportion
of total walks. Each walk step randomly switches
between traversing citation or semantic edges in
order to more fully explore the local neighbour-
hood of the seeds. The RWR process provides a
score for each node it reaches, which corresponds
to the frequency of random walk termination on
that node. Nodes which have many paths to the
seeds will generally be reached more often by the
RWR process and be scored higher than nodes that
are more isolated or not central to the seed nodes.
The resulting nodes are ranked by score and the

www.flaticon.com


subgraph formed by the top 30 scoring nodes (as
well as seed nodes) is returned to the user.

5 Conclusion

In this paper we introduced CiteNet, a search and
visualization tool for exploring scientific literature.
We described the basic design elements and imple-
mentation details of CiteNet, how to use it, and pre-
sented two compelling use cases where scientific
literature search is improved by a) incorporating
semantic information and b) by iteratively refin-
ing a search. We believe CiteNet will be useful to
the scientific community by offering an efficient
and intuitive alternative to current keyword-based
search engines.

Currently, we have indexed the majority of
PubMed to develop a proof-of-concept. The se-
mantic graph, however, has low coverage and our
immediate aim is to expand it to cover all currently
indexed articles. Moving forward, we plan to ex-
pand CiteNet to include literature from outside
the biomedical field with the goal of eventually
indexing all available scientific articles (as well
as pre-prints) – providing a unified search engine
for all disciplines. Additionally, we aim to fur-
ther improve our search algorithm by a) learning
document embeddings over the full article text as
opposed to only abstracts and b) incorporating the
citation graph topology with semantic representa-
tions directly using graph neural networks. Finally,
we will continue making improvements to the user
interface by introducing new visualizations, in ad-
dition to implementing user accounts, which will
provide a personalized search experience.
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